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Generalised homogenisation procedures for granular materials
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Abstract. Engineering materials are generally non-homogeneous, yet standard continuum descriptions of such
materials are admissible, provided that the size of the non-homogeneities is much smaller than the characteris-
tic length of the deformation pattern. If this is not the case, either the individual non-homogeneities have to be
described explicitly or the range of applicability of the continuum concept is extended by including additional
variables or degrees of freedom. In the paper the discrete nature of granular materials is modelled in the sim-
plest possible way by means of finite-difference equations. The difference equations may be homogenised in two
ways: the simplest approach is to replace the finite differences by the corresponding Taylor expansions. This leads
to a Cosserat continuum theory. A more sophisticated strategy is to homogenise the equations by means of a
discrete Fourier transformation. The result is a Kunin-type non-local theory. In the following these theories are
analysed by considering a model consisting of independent periodic 1D chains of solid spheres connected by shear
translational and rotational springs. It is found that the Cosserat theory offers a healthy balance between accu-
racy and simplicity. Kunin’s integral homogenisation theory leads to a non-local Cosserat continuum description
that yields an exact solution, but does not offer any real simplification in the solution of the model equations as
compared to the original discrete system. The rotational degree of freedom affects the phenomenology of wave
propagation considerably. When the rotation is suppressed, only one type of wave, viz. a shear wave, exists. When
the restriction on particle rotation is relaxed, the velocity of this wave decreases and another, high velocity wave
arises.

Key words: Cosserat continuum, homogenisation, non-local continuum, rotational degrees of freedom, wave
propagation

1. Introduction. Comparative analysis of non-standard continua approach to modelling
materials with microstructure

1.1. Non-standard continua

There are cases when the classical continuum mechanics approach is insufficient to model
adequately materials with microstructure. In particular, microstructure cannot be ignored
when one considers layered material, especially when the layers can slide, blocky structures,
granular or fractured media. The consideration of microstructure is necessary when the size
of redistribution of an external load is comparable with the microstructure size or if the stress
gradients at intergranular contact points (finite contact area, modelled as a contact point) of
grains have to be taken into account.

Naturally, there are different approaches (or combinations thereof) to take microstructural
effects into account. Each approach results in different types of standard or non-standard
continua.

The first step in the adaptation or extension of a standard continuum theory to granular
materials is the introduction of rotational degrees of freedom (DOF) in addition to the
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Figure 1. Macro- and micro-volumes and the relationship between the macro- and micro-displacements.

conventional translational ones (if, for instance, the spin of particles is important). This leads
to gradient or higher-order gradient theories (when further degrees of freedom have to be
included as well), resulting in the introduction of additional strain measures and the corre-
sponding stress tensors.

While the need for independent rotational DOF’s (Cosserat type theories, e.g. [1];
Nowacki [2]) is quite easy to understand in the context of granular and layered materials,
further increase of DOF requires more explanations. Mindlin [3] based his reasoning on the
simultaneous consideration of macro- and micro- displacements within a volume element.

In the spirit of Mindlin’s discussion we consider a macro-volume, i.e., the domain occu-
pied by a body, and choose a Cartesian coordinate system x1x2x3 (see Figure 1). Let P be
an arbitrary point of a body, the position of the point in the macro-volume being deter-
mined by the macro-coordinates xi . The macro-motion of this point can be described by the
macro-displacement vector u(xi) and macro-rotation vector ϕ = 1

2 rot u. According to conven-
tional continuum mechanics, the deformation measures at this point are the components of
the macro-distortion tensor ui,j , the symmetric part of which gives the usual components of
a macro-strain tensor εij = 1

2 (ui,j +uj,i). The antisymmetric part of the macro-distortion ten-
sor gives the macro-rotational vector ϕi = − 1

2εkliuk,l , where εijk is the alternating tensor. It
is seen that the macro-rotation vector and the distortion tensor are fully determined by the
components of the displacement vector u(xi).

Next, assume the material point P as a centroid of a micro-volume of the originally inho-
mogeneous medium. This volume element defines the scale of resolution of the envisaged con-
tinuum theory. Effects below this characteristic scale are ignored. This volume element could
not be constricted to the point because of the microstructure of the material. A particular
choice of the micro-volume size is not important here. It suffices to mention that, in gen-
eral, the micro-volume size is supposed to be (a) much larger than the microstructure size to
asymptotically satisfy the requirement for the micro-volume to be representative, i.e., contain
a sufficient number of elements of the microstructure and; (b) much smaller than the external
size such as the dimension of the problem or a characteristic length of the load redistribu-
tion (e.g., wavelength), to asymptotically satisfy the requirement for the micro-volume to be
infinitesimal. Furthermore, its shape has to reflect the material symmetry of the material to
be modelled.

We now introduce another local Cartesian coordinate system with the origin at P .
An arbitrary point P ′ of the micro-volume has the micro-coordinates x′

1x
′
2x

′
3. The vector
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connecting P and P ′ will be called the micro-displacement vector and denoted as u′(x′
i). The

micro-displacement vector characterises the displacement of the point P ′ within the micro-
particle (micro-volume element).

The displacement of the point P ′ being a point of the macro-volume is given by the sum
of the macro-displacement vector u(xi) and the micro-displacement vector u′(x′

i). Expanding
the components of the micro-displacement vector into the Taylor series at the vicinity of the
point P , one gets the corresponding coordinates of the displacement vector of the point P ′:

ui(x)+u′
i (x

′)=ui(x)+u′
i (0)+u′

i,j (0)x′
j + 1

2
u′

i,jk(0)x′
j x

′
k +· · · , (1.1)

where u′
i (0)=0, x

def= (x1, x2, x3), x′ def= (
x′

1, x
′
2, x

′
3

)
.

The underlying assumption behind Equation (1.1) is that the displacements within the rep-
resentative volume are analytic and can be represented by Taylor expansions around point P .
As discussed above (conditions (a) and (b)), the size of the volume element h must be much
smaller than the macro-volume characteristic dimension L and much bigger than the micro-
structure size a in a sense that the continuum approximation is a double asymptotic as h/L→
0 and a/h → 0 (e.g., [4–6]). As a result of this asymptotic transition, we have a continuum
that permits the usual description based on the established rules of differential geometry. The
only difference from a conventional continuum is that each point may have additional DOF,
namely the higher-order polynomial coefficients in (1.1) enabling the consideration of devia-
tions of the deformation from the mean values within a representative volume element.

The term u′
i,j provides us with nine micro-distortion components: three micro-rotations

and six micro-strains. If, for simplicity, we take into account only the antisymmetric part, we
arrive at a continuum with six DOF (three translational DOF, the macro-displacements ui ,
and three rotational ones, microrotations ϕi). This is the Cosserat theory or the theory of
micropolar elasticity (e.g., [2,7–9]). The rotational degrees of freedom are very often referred
to as the Cosserat rotations giving tribute to the brothers Cosserat who were the first to pro-
pose such a theory.

Further generalisations can be obtained by including the symmetric part of the microgra-
dients into the model as well and/or by keeping the next term of the Taylor expansion u′

i,jk

bringing the total number of DOFs to 36 [3].
It should be emphasised that the micro-deformations in the expansion (1.1) are indepen-

dent in general from the macroscopic deformation gradient. The relationship between the
macro- and the micro-deformation is established by means of additional constitutive relation-
ships.

The higher-order gradient theories necessitate the introduction of additional stress tensors
which are conjugate to the additional deformation measures (e.g., couple or moment stresses
in the Cosserat type theories; double-forces tensor in the Mindlin continuum, etc.). In the
elasticity theories, these new stress tensors can normally be obtained by differentiating the
variation of an elastic potential (the elastic energy density) with respect to the variation of
the deformation measures. The equations of equilibrium or motion also have to be obtained
for additional stress factors in the higher-order gradient theories. It should also be mentioned
that the formulation of boundary-value problems may be in terms of displacements comple-
mented by the additional DOF’s (for instance, rotations in the Cosserat theory) or in terms
of the stress tensors complemented by the conjugates of the additional DOF’s (for instance,
couple/moment stresses in the Cosserat theory) or in a mixed form.

It is well known that the governing equations of the continuum have to be translationally
and rotationally invariant. This requirement yields exactly 2×3 balance equations. Translational
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invariance requires the consideration of linear momentum; rotational invariance requires the
consideration of angular momentum. The equations of motion in the standard theories result
from the momentum balance, while the moment of momentum balance gives the symmetry of
the stress tensor. In the Cosserat theories both momentum balance and moment of momentum
balance are used, each contributing three equations. An interesting question for higher-order
theories would be where to get the additional equations of motion/equilibrium from. At pres-
ent, this question is still open1, as no other fundamental hypotheses similar to the hypotheses
of the isotropy and homogeneity of space and time have been formulated yet. That is why gra-
dient-enhanced theories become increasingly popular and used. They do not require additional
motion/equilibrium equations but at the same time allow one to include the strain gradients
into the formulation. This, in reality, does not add new DOF, but increases the order of the
governing partial differential equations.

Mindlin [3] used Hamilton’s principle for independent variations, which were his 12 DOF,
and obtained 12 equations of motion from the variational equation of motion. However, this
approach is applicable only in elastic materials. An application of the method of virtual power
for derivation of the balance equations of micropolar and second-gradient continua was dis-
cussed in the works of Germain [10,11] and Maugin [12].

The second approach (homogenisation by integral transformation) involves the introduc-
tion of a non-local (integral) constitutive law (when the long-range interactions between the
particles need to be accounted for, e.g., [13, p.34]). This, in general, means that the stress
components depend on the strains at all points of the continuum, albeit with weight decreas-
ing with distance from the point of interest. In essence, this approach shifts the procedure of
homogenisation from the definition of deformation measures (by introducing the volume ele-
ment) to the constitutive relationships. Both approaches can be combined leading to non-local
theories with additional degrees of freedom.

Non-local homogenisation strategies of the discrete materials were introduced by Kröner
[14], Kröner and Datta [15], Kunin and Waisman [16], Kunin [13, Chapter 2,3], [17, Chapters
2,3] and Eringen [18] for periodical microstructures. The homogenisation was performed by
trigonometric interpolation of the discrete field of displacements and rotations of the parti-
cles. In those theories the particle centres are assumed to be situated at the nodes of a regular
grid. This leads to non-local stress–deformation relationships reflecting the fact that the values
of the interpolating polynomial at a point are sensitive to the values at the other points. The
kernels of the non-local relationship are expressed through Kunin’s analog of the Dirac-delta
function which “remembers” the microstructure size.

Specifically, in the case of a three-DOF continuum, this homogenisation procedure leads
to a non-local continuum (with the same three DOF), the non-local stress–strain relationship
and the non-local stresses satisfying the conventional equations of equilibrium or motion. In
the following it will be demonstrated that, in a continuum with six DOF, the Cosserat con-
tinuum, this homogenisation strategy leads to a non-local Cosserat continuum. Subsequently,
in this continuum one comes up with the non-local constitutive equations in which stresses
and moment stresses are expressed through the deformation measures (strains and curva-
tures). Non-local stresses and moment stresses satisfy exactly the same equations of equilib-
rium or motion as in the case of a “local” or “conventional” Cosserat theory. We would like

1A possible remedy to obtain an extra set of equilibrium/motion equations in situations when the repre-
sentative volume element is made up of homogeneous but materially distinct sub-volumes is to divide the
volume element into smaller ones and write down the corresponding equations of motion/equilibrium for
each of them. At least in this way the lever-arm (the subdivision size) can be brought into the formulation
in order to get the third-order double-forces tensor with the balance equation for its components.
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to mention here that Kunin [17, Section 3.5] also considered a quasi-six-DOF continuum, in
which the three rotational DOF’s are equal to the three rotations of the standard continuum.
In Section 2 we represent a generalisation of Kunin’s method to the case of independent rota-
tions.

The major difference between local and non-local continua is that in the latter the stresses
and couple or moment stresses become pseudo-stresses, as they no longer refer to an ele-
mentary area, but to a finite volume. This obviously contradicts the Cauchy-Euler princi-
ple. The question arises why the equations of equilibrium should necessarily hold in their
“conventional”, local form when the interaction between the parts of the body is not of
the surface nature; it is transmitted not only through the surface, but also through the
volume.

For the considered periodic case, a justification of the conventional form of the equa-
tions of equilibrium/motion will be offered when a non-local orthotropic Cosserat contin-
uum model will be constructed for non-interacting identical chains of granulates. Starting
from a discrete medium consisting of, for example, particles having translational and rota-
tional DOF’s, it is possible to obtain the Lagrange equation of motion. It turns out that
the Lagrange equations are formally identical to the equations of a local Cosserat continuum
with non-local constitutive relations. This finding supports the adoption of the “usual” local
conservation laws in connection with non-local continua.

In general, the choice of the kernels is based on purely mechanistic or phenomenologi-
cal considerations (e.g., [19,20]), material symmetry combined with a choice of the size of
the domain of influence. Unfortunately, and in particular in 3D, these requirements do not
constrain the possible variety of kernel forms significantly. This “inconvenience” is rather
difficult to overcome, as the kernel is a function in principle of all variables of the contin-
uum model. This poses considerable difficulties in determining possible kernel forms from
experiments.

The phenomenological approach does not address the question of the validity of local
conservation laws and the physical significance of Cauchy stresses in the presence of non-
local constitutive laws. These issues can only be answered and follow naturally if the model
equations are derived from a micro-mechanical model by means of a suitable homogenisation
procedure.

Alternatively, non-local operators on strains are used in their own right as substitutes for
local strains in the damage loading function [21] leading to non-local damage models (e.g.,
[22–24]).

Finally we mention a selection of developments (by no means complete) we consider rel-
evant to the topic of this paper: macroscopic modelling of layered materials was conducted
by Mühlhaus [25], Zvolinskii and Shkhinek [26], Adhikary and Dyskin [27]. In this 2D mod-
elling the role of the Cosserat rotation (only one rotation in this case) was played by the
rotation of the neutral axis of the layer (the deflection gradient), while the moment stresses
were the bending moment per unit area in the cross-sections of the layer. Mühlhaus [28]
and Mühlhaus and Hornby [29,30] modified the model of layered materials by introduc-
ing a different rotation measure, which is the relative deformation gradient. Mühlhaus [25]
and Sulem and Mühlhaus [31] developed a model for a blocky material (the material bro-
ken into rectangular blocks). Cosserat-type theories for random packing of granulates were
also developed, for instance, by Mühlhaus and Vardoulakis [32], Mühlhaus et al. [33], Chang
and Ma [34]. A combination of a Cosserat continuum and a higher-order gradient contin-
uum for granular materials has been derived by Mühlhaus and Oka [35] and Mühlhaus and
Hornby [36].
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Additional DOF’s also appear in a new numerical fracture-mechanics method [37]. In this
method the additional DOF’s are associated with the distribution of displacement discontinu-
ity introduced to model crack evolution.

1.2. Homogenisation methods

Homogenisation, as the main method of constructing continuum descriptions of a discrete
material, has always been the cornerstone of continuum mechanics. It was the main simpli-
fying factor and for decades provided a powerful means to model solid bodies as a mathe-
matical continuum rather than a collection of elements the solids are composed of. The first
and simplest approach was not to consider the scale of the microstructure at all, but to smear
it, so to speak. The introduction of the concept of the representative volume element served
this purpose perfectly. Many significant problems were and are formulated and solved within
the framework of classical elasticity and plasticity theories. However, restrictions of smear-
ing the microstructure were felt mainly where the microstructure was essential to model and
thus could not be ignored. As a result, more sophisticated continuum theories became high in
demand around the late 1980s and so were adequate homogenisation strategies. The following
is a sampling of the most important homogenisation procedures:
1. Averaging over volume element adopted in the theory of effective characteristics (e.g., [38–

42], [43, Part I], [5], [44, Chapter 3], [45]). Homogenisation produces a set of macroscopic
elastic moduli based on the properties of the microstructure. These microstructural con-
stants are called effective characteristics, from which the name of the method derives.

2. Homogenisation method applied to materials with randomly varying elastic properties based
on averaging over realisations (ensemble averaging), ([46,47]).

3. A group of methods based on modelling of periodically regular microstructure such as a
periodical system of defects/inclusions, layers, regular granular packing (e.g., [48–50]).
This group of methods exploits the fact that the microstructure is positioned in periodical
cells and the problem is solved for a representative defect. Then by using the periodicity,
one seeks the solution for the whole domain by looking for suitable periodic functions
accompanied by corresponding periodic boundary conditions at the cell boundaries (e.g.,
[51, Chapter 1–4, 6, 7], [43], [45]).

4. Homogenisation by integral transformations ([13, Chapter 2, 3], [17, Chapter 2, 3]). This is
a special method of homogenisation applied to periodical structures only. The method is
based on trigonometrical interpolation. The discrete medium is replaced with a continu-
ous one such that the continuous values of field variables coincide with the discrete ones
at the nodes and give some values in between by using the above trigonometrical inter-
polation.

5. Homogenisation by differential expansions (e.g., [35], [52, Chapter 4], [53–55]). The method
is based on expanding the field variables into a Taylor series once a strategy to relate the
discrete variables to continuum variables is established.

1.3. Continuum modelling of granular materials

Depending on the packing density, granular materials can behave like solids or like fluids. If
the packing is dense, granular material behaves solid-like. Large (finite) deformations are not
ruled out. For loose packings, granular material may behave fluid-like. Here we concentrate
on the first type. For a discussion of the fluid-like regime see, e.g., [36]. We concentrate on
elastic models for simplicity, since the emphasis is on the homogenisation procedure and not
on constitutive details.
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Discrete and continuum models represent two main streams of modelling of mechanical
behaviour of granular materials. In the former approach granular materials are modelled as
a discrete system using, for example, the discrete-element method. Many models are devel-
oped in the framework of this approach (e.g., [56–59]). Equations of motion are solved for
each particle in the assembly: the particle is subjected to momentum or even mass transfer
from neighbouring particles. The number of equations to solve is naturally quite large requir-
ing powerful computers. On top of that, direct computer simulations would require detailed
information (geometrical and mechanical) of all grains in the assembly. This kind of informa-
tion is usually hard to obtain or not available. In other words, the computational accuracy
achievable in principle by this method much exceeds the accuracy of the input data available
– hardly an efficient way of modelling.

In the continuum approach the equations of motion are derived for a volume element;
governing equations describing constitutive behaviour are formulated by using the continuum
stress–strain concepts. Continuum models can be classified as phenomenological and micro-
structural. Phenomenological modelling (e.g., [60]) is based on postulating the constitutive
equations, which necessitates a considerable amount of testing and model calibration.

Microstructural continuum modelling was extensively developed over the past few years as
an alternative or a strategy to provide constraints for phenomenological constitutive models.
The benefit of the microstructural approach is that it results in rational estimates of the model
parameters.

For applications of the microstructural approach see the following papers [48], [49],
[61–65], [35]. The principles of microstructural modelling have been revisited recently by
Suiker et al. [53–55] and Cambou et al. [66].

The first simple micro-polar (Cosserat) type theories for random packing granulates
were developed by Mühlhaus and Vardoulakis [32], Mühlhaus et al. [33], Chang and Ma
[34]. Both stresses and moment stresses were introduced, but the contact particle interac-
tion was less sophisticated than in the more recently developed theories [67]. For example,
moment stresses were attributed to the tangential component of the contact force and only
resistance to the relative particle displacements was introduced into the contact relations
(e.g., [33]).

Further development of pure Cosserat-type theories for randomly packed assemblies went
in the direction of more sophisticated and refined particle-interaction modelling. This includes
both contact force and moment exerted onto a reference particle, as well as the resistance
of the particles to both their relative displacements and relative rotations at the contact
points. These refinements were implemented by Pasternak and Mühlhaus [68–70]. Orthotrop-
ic Cosserat and non-local Cosserat continuum models for non-interacting chains of granu-
lates were developed by Mühlhaus et al. [6], Pasternak and Mühlhaus [71,72]; see details in
Section 2.

The wide variety of approaches discussed above suggests that a comparative study of the
different methodologies may be useful in order to assess the quality of the approximation of
the different homogenisation methods.

For simplicity we consider a model example of microstructure: 1D non-interacting chains.
The structural bonds determine the material behaviour only in one direction. This case of
non-interacting chains of spheres is artificial and cannot be seriously thought of as an exam-
ple of a granular material. It is selected to serve a special purpose – to have a structure for
which the exact solution would not be very difficult to find and to provide a testing ground
for comparison of homogenisation methods. We will then proceed to investigate wave propa-
gation in granular materials with internal rotational degrees of freedom.
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Figure 2. 1D chain of spherical grains connected by translational (shear) and rotational springs.

2. Homogenisation of 1D structures

In the following we demonstrate how additional rotational degrees of freedom arise natu-
rally by mathematical homogenisation of a discrete system. For this purpose, a simple peri-
odic discrete model of spheres connected to each other by both rotational and translational
springs will be considered. This model allows the analytical derivation of a general closed-
form solution.

The aim of this section is to investigate two homogenisation techniques. One of them pro-
duces an anisotropic Cosserat continuum and the other a non-local Cosserat continuum. A
boundary-value problem of a vertical duct will be considered in order to establish how accu-
rately the Cosserat and non-local models describe the behaviour of the granular materials.

2.1. Model formulation

In many cases, generalised continuum theories provide a convenient framework for the
approximate representation of an originally discrete model. In order to analyse different
homogenisation techniques, we consider a simple material consisting of one-dimensional, par-
allel chains of identical, spherical grains. We suppose that the chains do not interact with each
other. The grains in a chain are connected by translational shear springs of stiffness k and
rotational springs of stiffness kϕ (Figure 2), r is the sphere radius. The grains in neighbour-
ing chains are not connected and move independently.

The potential (elastic) energy of a single chain in the system reads

U1 = 1
2
k
∑

i

((u3i −u3i−1)+ (a/2)(ϕ2i +ϕ2i−1))
2 + 1

2
kϕ

∑

i

(ϕ2i −ϕ2i−1)
2 (2.1)

with the potential-energy density referred to the ith sphere being:

Wi =
(

2ηa3
)−1 {

k
(
(u3i −u3i−1)+ (a/2)(ϕ2i +ϕ2i−1)

)2 +kϕ(ϕ2i −ϕ2i−1)
2
}

. (2.2)

Here a designates the spacing of the mass centres of neighbouring spheres, and a−2η−1 is the
number of chains per unit area of cross-section.

We note here that the rotational springs are important in this arrangement, since neglect-
ing the resistance to rotation (kϕ →0) makes the energy lose its positive definiteness.

The equations of motion for the spheres are:

mü3i −k(u3i+1 −2u3i +u3i−1)−k(a/2)(ϕ2i+1 −ϕ2i−1)=q3i , (2.31)

J ϕ̈2i +k(a/2)(u3i+1 −u3i−1)+k(a2/4)(ϕ2i+1 +2ϕ2i +ϕ2i−1)−kϕ(ϕ2i+1 −2ϕ2i +ϕ2i−1)

=M2i , (2.32)

where u3i , ϕ2i are the independent Lagrange coordinates, q3i and M2i are applied load and
moment at ith sphere respectively, J =2mr2/5 is the moment of inertia of the sphere.
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2.2. Homogenisation by differential expansion (Cosserat continuum)

We replace the finite-difference expressions in (2.2) with corresponding differential expressions.
Truncation of the Taylor expansions in a after the second-order terms gives the following
approximation

W(x1)=
(

2ηa3
)−1

{

k

(
∂u3

∂x1

)2

a2 +2ka
∂u3

∂x1
ϕ2a +ka2ϕ2

2 +kϕ

(
∂ϕ2

∂x1

)2

a2

}

. (2.4)

Differentiation of the energy density with respect to the Cosserat deformation measures,
viz. strains and curvatures,

γ13 = ∂u3

∂x1
+ϕ2, κ12 = ∂ϕ2

∂x1
, (2.5)

gives

σ13 =k (ηa)−1 γ13, µ12 =kϕ (ηa)−1 κ12. (2.6)

Introduction of body force f3 and moment m2 and consideration of momentum and angu-
lar momentum equilibrium yield

∂σ13

∂x1
+ρf3 =ρü3,

∂µ12

∂x1
−σ13 +ρm2 = J̃ ϕ̈2, (2.7)

where ρ = m

a3η
is the density, J̃ = J

a3η
is rotational inertia per unit volume or density of rota-

tional inertia.
Equations (2.5–2.7) formally represent a 1D Cosserat continuum (e.g., [2]). Every point

of this continuum has two degrees of freedom: u3 represents the displacement, while ϕ2

is being identified as the independent rotational degree of freedom, the Cosserat rotation.
Mechanically speaking, the obtained continuum equations describe a 3D orthotropic Coss-
erat continuum (all other components of stress and moment stress tensors and corresponding
deformation measures are zero). Formally, after suitable reinterpretation of the model param-
eters2, one obtains the governing equations of a Timoshenko beam (e.g., [28,73, p. 183]). In
this case ϕ2 represents the rotation of the beam cross-section and u3 is the displacement of
its neutral fibre.

After substituting the constitutive equations (2.6) in the equations of motion (2.7), we
obtain the Cosserat equations of motion (the Cosserat equivalent of Lamé equations):

k

ηa

(
∂2u3

∂x2
1

+ ∂ϕ2

∂x1

)

+ρf3 =ρü3, (2.81)

1
ηa

(

kϕ

∂2ϕ2

∂x2
1

−k
∂u3

∂x1
−kϕ2

)

+ρm2 = J

a3η
ϕ̈2. (2.82)

Next we homogenise the discrete equations of motion (2.31–2.32) and compare the result
with the obtained Cosserat equations of motion (2.81–2.82). For the derivation of the contin-
uum version of equations (2.31–2.32) we first replace the discrete coordinate by a continuous
coordinate, i.e., ai →x as outlined for example by Mühlhaus and Oka [35] u3i �→u3(x1),

u3i �→u3(x1), ü3i �→ ü3(x1), ϕ2i �→ϕ2(x1), ϕ̈2i �→ ϕ̈2(x1), q3i �→q3(x1),M2i �→M2(x1),

u3i±1 �→u3(x1 ±a), u3i±1 �→u3(x1 ±a), ϕ3i±1 �→ϕ3(x1 ±a).

2kϕ/a is interpreted as the bending stiffness, k/a as the shear modulus.
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Equations (2.31–2.32) can formally be written in a homogenised (continuous) form by
introducing continuous functions u3(x), ϕ2(x) which coincide with u3i and ϕ2i (x) at discrete
points x =ai and assume some values in between:

mü3(x1)−k[u3(x1 +a)−2u3(x1)+u3(x1 −a)]−k(a/2)[ϕ2(x1 +a)−ϕ2(x1 −a)]=q3(x1),

(2.91)

J ϕ̈2(x1)+k(a/2)[u3(x1 +a)−u3(x1 −a)]+k(a2/4)[ϕ2(x1 +a)+2ϕ2(x1)+ϕ2(x1 −a)]

−kϕ [ϕ2(x1 +a)−2ϕ2(x1)+ϕ2(x1 −a)]=M2(x1). (2.92)

These formal equations will form the starting point for the homogenisation below.
Following Mühlhaus and Oka [35], Equations (2.91–2.92) can be homogenised by replac-

ing the finite differences with the Taylor-series expansions, keeping terms of the second order
in a and normalising the obtained equations by the volume (i.e., dividing by a3η). One even-
tually has

k

ηa
[u′′

3(x1)+ϕ′
2(x1)]+O(1)+ q3(x1)

a3η
=ρü3(x1), (2.101)

1
ηa

[
kϕϕ′′

2 (x1)−ku′
3(x1)−kϕ2(x1)

]+O(1)+ M2(x1)

a3η
= J

a3η
ϕ̈2(x1), (2.102)

where ρ =m/(a3η).
Comparison of (2.81–2.82) with (2.101–2.102) leads to the conclusion that the equations of

motion in the Cosserat approximation (2.81–2.82) give the same leading terms as the approx-
imation of the discrete (exact) equations of motion (2.31–2.32). Hence, the Cosserat theory
gives exact terms up to the first order in a inclusive. One could anticipate that the terms of
order higher than a would be captured by higher-order theories. The resolution of the theory
is a, i.e., all the “events” smaller than a are not seen (recognised) by the Cosserat continuum,
which is natural, since the a is a length scale or microstructural parameter of this Cosserat
theory.

This Cosserat theory has also another length-scale parameter. The second parameter is
given by the square root of the ratio of the stiffness of the rotational spring kϕ to the trans-
lational spring stiffness k and has the dimension of length.

Note that the limit a → 0 in both (2.81–2.82) and (2.101–2.102) should be understood as
a/L → 0, where L is the size of redistribution of the load (i.e., an external size). In other
words, in the above calculations the normalisation in which L=1 is presumed.

It follows from the above analysis that the Cosserat equations of motion through dis-
placements and rotations (a kind of “Lamé equations” for the Cosserat continuum) can
be obtained either by the direct homogenisation of the discrete equations of motion or by
homogenisation by differential expansions of the potential-energy density of the discrete sys-
tem, provided that the same order of approximation is maintained in both cases.

The outlined strategy of homogenisation by differential expansions allows one to formu-
late the appropriate continuum description of the discrete system. The homogenised potential-
energy density of the mechanical system has the meaning of the elastic energy density in the
continuum sense with subsequent introduction of the deformation measures. Once the constit-
utive equations have been recovered, the Cosserat “Lamé equations” are obtained in a usual
fashion by substituting the governing equations in the motion equation. Thus, the boundary-
value problem can be formulated accompanied by boundary conditions. This approach can be
virtually adjusted to any microstructural-particles arrangements.
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2.3. Homogenisation by integral transformation (non-local Cosserat continuum)

Here we consider another homogenisation strategy, namely homogenisation by integral
transformations. Kunin’s [13, pp. 13–14] homogenisation procedure for discrete periodical
structures is based on the trigonometrical interpolation of discrete functions. For the mate-
rial consisting of independent periodical chains of grains we have:

(
u3(x1)

ϕ2(x1)

)
=a

∑

i

(
u3i

ϕ2i

)
δK(x1 − ia),

(
u3i

ϕ2i

)
=
∫

δK(x1 − ia)

(
u3(x1)

ϕ2(x1)

)
dx1, δK(x)

= (πx)−1 sin
πx

a
. (2.11)

The application of (2.111) to the discrete equations of motion (2.3) yields the non-local
equations of motion (non-local Lamé equations):

k

∫ +∞

−∞
[2δK(x1 −y1)−δK(x1 −y1 −a)−δK(x1 −y1 +a)]u3(y1)dy1 +

+k(a/2)

∫ +∞

−∞
[δK(x1−y1 −a)−δK(x1 −y1 +a)]ϕ2(y1)dy1 =q3(x1)−mü3(x1), (2.121)

k(a/2)

∫ +∞

−∞
[δK(x1 −y1 +a)−δK(x1 −y1 −a)]u3(y1)dy1 +

+k(a2/4)

∫ +∞

−∞
[δK(x1 −y1 +a)+2δK(x1 −y1)+δK(x1 −y1 −a)]ϕ2(y1)dy1 +

+kϕ

∫ +∞

−∞
[2δK(x1 −y1)−δK(x1 −y1 +a)−δK(x1 −y1 −a)]ϕ2(y1)dy1 =M2(x1)−J ϕ̈2(x1).

(2.122)

These equations are essentially a representation of (2.9).
In order to obtain the constitutive relationship, we consider the potential energy of a chain

(2.1), since the structure we are studying is essentially one-dimensional. Inserting (2.111) into
(2.1), integrating the result by parts and assuming that the functions u and ϕ and their deriv-
atives decay strongly enough at infinity to make the non-integral terms zero, we obtain the
following representation of the elastic energy of the chain:

U1 = k

2a

∫ ∫
[2C(x1 −y1)−C(x1 −y1 −a)−C(x1 −y1 +a)]γ13(x1)γ13(y1)dx1dy1 +

+ k

a

∫ ∫
[2K(x1 −y1)−K(x1 −y1 −a)−K(x1 −y1 +a)]κ12(x1)γ13(y1)dx1dy1 +

+ k

2a

∫ ∫
[2K1(x1 −y1)−K1(x1 −y1 −a)−K1(x1 −y1 +a)]κ12(x1)κ12(y1)dx1dy1 +

+ k

2

∫ ∫
[C(x1 −y1 −a)−C(x1 −y1 +a)]γ13(x1)κ12(y1)dx1dy1 +

+ k

2

∫ ∫
[K(x1 −y1 −a)−K(x1 −y1 +a)]κ12(x1)κ12(y1)dx1dy1 +

+ ka

8

∫ ∫
[2C(x1 −y1)+C(x1 −y1 −a)+C(x1 −y1 +a)]κ12(x1)κ12(y1)dx1dy1 +

+ kϕ

2a

∫ ∫
[2C(x1 −y1)−C(x1 −y1 −a)−C(x1 −y1 +a)]κ12(x1)κ12(y1)dx1dy1 (2.13)

where C′′(x)=−δK(x), K ′(x)=C(x), K ′′
1 (x)=−C(x) and

γ13 = ∂u3

∂x1
+ϕ2, κ12 = ∂ϕ2

∂x1
(2.14)



210 E. Pasternak and H.-B. Mühlhaus

are components of the Cosserat relative deformation gradient and the curvature tensor. The
deformation measures (2.14) are invariant with respect to rigid-body motions: if we consider
the rigid-body translation u3 = const, we have ϕ2 = 0, γ13 = 0, κ12 = 0; similarly for the rigid-
body rotation u3 =−x1ϕ2, ϕ2 = const, we find γ13 = ∂u3/∂x1 +ϕ2 =−ϕ2 +ϕ2 =0, κ12 =0.

Consider the energy of the whole body U =N1N2U1, where N1, N2 are numbers of chains
in the directions x2 and x3, respectively. Variation of the energy is

δU =
∫

V

δW(x1, x2, x3)dv =ηa2N1N2

∫ +∞

−∞
δW(x1)dx1 =ηa2N1N2

∫ +∞

−∞
(σδε +µδκ)dx1,

(2.15)

where W(x1, x2, x3) is the specific potential energy at point x = (x1, x2, x3), and η1/2a is the
spacing between non-interacting chains of the spatial assembly. Since δU =N1N2δU1, the var-
iation of U1 =U1(γ13, κ12) in (2.13), with subsequent extraction of δW in (2.15) and the intro-
duction of the stress and moment stress

σ13(x)= δW

δγ13(x)
, µ12(x)= δW

δκ12(x)
, (2.16)

yield the following expressions for the stress and the moment stress:

σ13(x1)= (√ηa
)−2

{
E

∫ +∞

−∞
[2C(x1 −y1)−C(x1 −y1 −a)−C(x1 −y1 +a)]γ13(y1)dy1−

− E

∫ +∞

−∞
[2K(x1 −y1)−K(x1 −y1 −a)−K(x1 −y1 +a)]κ12(y1)dy1+

+E(a/2)

∫ +∞

−∞
[C(x1 −y1 −a)−C(x1 −y1 +a)]κ12(y1)dy1

}
, E =k/a,

(2.17)

µ12(x1)= (√ηa
)−2

{
E(a/2)

∫ +∞

−∞
[C(x1 −y1 +a)−C(x1 −y1 −a)]γ13(y1)dy1+

+ E(a2/4)

∫ +∞

−∞
[2C(x1 −y1)+

+ C(x1 −y1 −a)+C(x1 −y1 +a)]�12(y1)dy1+
+ Eϕ

∫ +∞

−∞
[2C(x1 −y1)−

− C(x1 −y1 −a)−C(x1 −y1 +a)]�12(y1)dy1+
+ E

∫ +∞

−∞
[2K(x1 −y1)−K(x1 −y1 +a)−

− K(x1 −y1 −a)]γ13(y1)dy1+
+ E

∫ +∞

−∞
[2K1(x1 −y1)−K1(x1 −y1 +a)−

− K1(x1 −y1 −a)]�12(y1)dy1+
+ Ea

∫ +∞

−∞
[K(x1 −y1 −a)−

− K(x1 −y1 +a)]�12(y1)dy1} , Eϕ =kϕ/a. (2.18)

It is seen that homogenisation by integral transformations produces non-local constitutive
relationships with oscillating kernels. The origin of this particular type of non-locality is in
the fact that the interpolation function for a given set of u3i , ϕ2i is unique, and hence the
alteration of any local value leads to the change of the whole function.
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Integrating the non-local “Lamé equations” (2.12) by parts, extracting the expressions
(2.17) and (2.18) and accounting for volume forces and moments yields the following
Euler–Lagrange equations:

dσ13(x1)

dx1
+ q3(x1)

a3η
= m

a3η
ü3(x1),

dµ12(x1)

dx1
−σ13(x1)+ M2(x1)

a3η
= J

a3η
ϕ̈2(x1). (2.19)

The form of the angular momentum balance (2.192) is standard and consistent with its
Cosserat counterpart (cf. (2.72)). Stresses σ13, µ12 are interpreted conventionally. However, the
constitutive relationships are non-local, i.e., determined by the deformations of all parts of a
chain. There could be another view on the non-local stresses and moment stresses. Since they
are no longer referred to the elementary area, they are supposed to act on in the conven-
tional Cauchy sense; the continuum obtained may be regarded as a pseudo-one. Nevertheless,
we prefer the term ‘non-local Cosserat continuum’.

In essence, Equations (2.14) and (2.17–2.19) constitute mathematically a 1D non-local
Cosserat continuum. Every point of this continuum has two degrees of freedom, the displace-
ment u3 and the Cosserat rotation ϕ2. Mechanically speaking, the obtained continuum equa-
tions describe a 3D non-local orthotropic Cosserat continuum (all other components of stress
and moment stress tensors and corresponding deformation measures are zero).

Obviously, the non-local “Lamé equations” (2.121–2.122) can be recovered if one substi-
tutes the non-local constitutive relationships (2.17) and (2.18) in the equations of motion
(2.19). This gives a displacement–rotation formulation.

2.4. Invertibility of kernels in non-local constitutive equations

Here we will discuss the issue of invertibility of the kernels in non-local constitutive equa-
tions (2.17) and (2.18). One can expect that they have an inverse, since their generating func-
tion, the Kunin-delta, has the inverse in contrast to the non-invertible bell-shaped Gaussian
kernels often used nowadays (e.g. [20]).

The discrete system with 6N degrees of freedom, N being the number of the particles
in it, is defined by the 6N Lagrange coordinates, displacements and rotations, ui , ϕi . If the
forces and moments qi , Mi are applied to the mechanical system, the one-to-one correspon-
dence between the loads applied to the mechanical system and displacements and rotations
is established by the discrete (Lagrange) equations of motion (2.3). Let A be this one-to-one
mapping:

A

[ �u
�ϕ
]

=
[ �q

�M
]

. (2.20)

If the system of the discrete equations of motion can be solved for displacements and rota-
tions of the particles, then it is given by the inverse mapping A

−1
.

The application of the homogenisation by integral transformations (Kunin’s homogenisa-
tion) (2.11) gives the homogenised continuum variables u(x), ϕ(x), q(x), M(x), governed by
the homogenised equations of motion (2.3) or formally (2.20), for example in the form (2.9)
or (2.12). The spaces of the discrete and continuum representations are isomorphic; see Kunin
[13, p. 14]. Let H1 be this isomorphism, i.e., H1 establishes the isomorphism between the
discrete Lagrange coordinates and their continuum counterparts, between the discrete and
non-local equations of motion. Following a procedure similar to that outlined in the previ-
ous section, a non-local constitutive relationship can be obtained (e.g., (2.17) and (2.18)). We
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Figure 3. Isomorphism of spaces.
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Figure 4. 1D chain of spherical grains connected
by translational (normal) springs.

formally write it down as follows
[

σ13

µ12

]
=K

[
γ13

κ12

]
, (2.21)

where K is non-local operator acting on the strains and curvatures and producing non-local
stresses and moment stresses.

The space of the discrete loads applied to the system is isomorphic to the space of the
non-local stresses and moment stresses, and this isomorphism H2 is established by the equa-
tions of equilibrium (2.19) modulo the two free constants determined by the boundary con-
ditions. This is illustrated by the diagram of Figure 3. Thus we conclude that if ∃A

−1
then

∃K
−1

, i.e., K is invertible. This means that kernels in non-local constitutive equations have
their inverses if the initial discrete mechanical system is solvable for displacements and rota-
tions under prescribed loads.

It is worth noting that since H1 establishes the isomorphism between the discrete Lagrange
coordinates and their continuum counterparts, i.e., between the discrete and non-local equa-
tions of motion, the homogenised equations (2.3) or (2.12) are exact. This means that the
solution of a boundary-value problem under this non-local formulation must be exact or, in
other words, must coincide with the discrete one.

2.5. Random kernels

As we established above in the non-local relationships (2.17) and (2.18), some of the kernels
exhibit an oscillating behaviour. An interesting question is now whether the oscillating behav-
iour of the kernels in the non-local relationships (2.17) and (2.18) will disappear if some form
of randomness is introduced into the mechanical system. In other words, can the randomness
help to cure the oscillating nature of the kernels in the non-local constitutive equations, i.e.,
can we get a nice bell-shape form of the kernels in this case, as presumed e.g. by Eringen [20].
We try to find what non-local kernels look like for the irregular arrangements of the balls in
chains. Since all the kernels were generated by the Kunin-delta, it would suffice to consider a
less sophisticated model in which the nature of the problem is preserved, but the number of
kernels would reduce significantly.

In view of this, we consider a simple material consisting of one-dimensional, parallel, non-
interacting chains of identical, spherical grains as before, but now the grains in a chain are
connected by translational normal springs of stiffness ki only; r is the sphere radius and a is
the inter-ball distance as before (Figure 4). To be able to apply the homogenisation by inte-
gral transformation the inter-ball spacing is presumed constant. We assume that the stiffnesses
ki are independent random variables, normally distributed with the mathematical expectations
E(ki)=k and the variance Var(ki)= s2. This way the irregularity of the system is achieved. It
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will be sufficient to consider only one chain, as our aim is restricted to investigating the form
of the kernel, rather than building a proper continuum for this model.

The potential (elastic) energy of a single chain in the system reads

U1 = 1
2

∑

i

ki(ui −ui−1)
2. (2.22)

Insertion of (2.111) into (2.22) yields the following homogenisation for the potential energy:

U1 = 1
2

∫ ∫
�̂(x, y)[u(x)−u(x −a)][u(y)−u(y −a)]dxdy, (2.23)

�̂(x, y)=
∑

i

kiδK(x − ia)δK(y − ia). (2.24)

In the series (2.24) ki are independent normal variables and
∑

i [δK(x − ia)δK(y − ia)]2 <

∞. Therefore, for fixed (x, y), �̂(x, y) is a normal variable (e.g., [74, p. 170]). Accordingly,
the kernel �̂ is a normally distributed random function. Since the number of spheres in the
chain is large, the finite sums can be replaced with series, the mathematical expectation and
the variance are

E �̂(x, y)=
∑

i

δK(x − ia)δK(y − ia)Eki = k

a
δK(x −y), (2.25)

Var�̂(x, y)= s2π−2

(x −y)2

{
−2(a−1δK(x −y)−a−2) sin

πx

a
sin

πy

a
+a−2

(
sin

πx

a
− sin

πy

a

)2
}

.

(2.26)

The mathematical expectation is the kernel that one would obtain conducting stochastic
experiments and according to (2.25) is given by Kunin-delta function (with a factor) that is
oscillating. This means that the imposed randomness modelling irregularity of the particle
arrangement does not remove the oscillating nature of the kernel, i.e., after averaging the ker-
nel determined by the random function (2.25) does not have the Gaussian, bell-shaped form.

The variance (2.26) behaves asymptotically as s2a−4[(sin2(πx/a))/3+1] as (x −y)→0 and
thus does not have singularities when (x −y)→0, which is sound since the series in (2.24) is
convergent.

The normally distributed function �̂(x, y) is fully determined by its mathematical expec-
tation, the variance and the two-point correlation function. The correlation function between
any two points �̂1 ≡ �̂(x1, y1) = ∑

i kiδK(x1 − ia)δK(y1 − ia) and �̂2 ≡ �̂(x2, y2) =∑
i kiδK(x2 − ia)δK(y2 − ia) can be found as follows:

COV(�̂1, �̂2)=−s2π−3a−1 sin
πx1

a
sin

πy1

a
sin

πx2

a
sin

πy2

a

{
cot πx1

a

(x1 −x2)(x1 −y1)(x1 −y2)
+

+ cot πx2
a

(x2 −x1)(x2 −y1)(x2 −y2)
+ cot πy1

a

(y1 −x1)(y1 −x2)(y1 −y2)
+

+ cot πy2
a

(y2 −x1)(y2 −x2)(y2 −y1)

}

. (2.27)

It can be shown that the formal limiting transition x1 → x2, y1 → y2 leads to COV(�̂, �̂) =
Var�̂. Indeed, by taking the limit of (x1, y1)→ (x2, y2) in the last formula, one arrives at the
formula for the variance (2.26). This serves as an indirect verification of (2.27).
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Figure 5. Model of the duct with grains.

2.6. A boundary-value problem: vertical duct

Let us consider an infinitely long duct occupying the area 0 < x1 < L, |x3| < ∞. The duct is
filled with granular material modelled by identical regular chains of balls connected by trans-
lational and rotational springs (Figure 5). The boundaries of each chain are subjected to pure
clamping which corresponds to the following boundary conditions: u3 =0, ϕ2 =0. The volume
force of ρg is applied to every ball. Let us assume that all fields depend on x1 only. The iner-
tia terms ü3, ϕ̈2 are neglected.

For the sake of simplicity, x will be written instead of x1, u instead of u3, ϕ instead of ϕ2.

2.6.1. Exact solution of the discrete equations of equilibrium for the duct
We now find the exact solution – the solution of the finite-difference equations (2.3) for the
static case, qi =q, (q =−Bηa3), Mi =0 under the following boundary conditions:

uj=0 =u0, uj=N =uN, ϕj=0 =ϕ0, ϕj=N =ϕN. (2.28)

The general solution of the correspondent homogeneous system:

−k(ui+1 −2ui +ui−1)−k(a/2)(ϕi+1 −ϕi−1)=0 (i =1, . . . ,N −1), (2.291)

k(a/2)(ui+1 −ui−1)+k(a2/4)(ϕi+1 +2ϕi +ϕi−1)−kϕ(ϕi+1 −2ϕi +ϕi−1)=0 (2.292)

is sought in the form ui =Cχi , ϕi = C̄χi . By substituting it in (2.29), one can find the multiple
root of fourth order, χ =1, of the characteristic equation. Then using the boundary conditions
at j =0, one may write the solution of the homogeneous system in the form:

uc
j =u0 −

(
aϕ0 +

(
a

6
− 2kϕ

ka

)
C̄2

)
j − a

2
C̄1j

2 − a

3
C̄2j

3, ϕc
j =ϕ0 + C̄1j + C̄2j

2, (2.30)

where C̄1 and C̄2 can be obtained from the boundary conditions at the other end, j =N .
When ui is eliminated from the system (2.29), it can be shown that the particular solution

of (2.3) for the rotations satisfies the equation

�3ϕi =−aq

kϕ

, �=f (x +1)−f (x). (2.31)

A particular solution of Equation (2.31) can be written in the form:

ϕ
p
i =−aq

kϕ

1
6
i3. (2.32)
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Then, a particular solution in displacements can be found as a solution of the equation

�2ui =−a

2
�(�+2)ϕi − q

k
. (2.33)

Eventually, the particular solution of Equation (2.33) can be written in the form:

u
p
i = a2q

24kϕ

i4 +
(

a2q

24kϕ

− q

2k

)

i2. (2.34)

The full solution now becomes

uj =u0 −
(

aϕ0 +2
k(a2/4)−3kϕ

3ka
C̄2

)

j − a

2
C̄1j

2 − a

3
C̄2j

3 + a2q

24kϕ

j4 +

+
(

a2q

24kϕ

− q

2k

)

j2, (2.351)

ϕj =ϕ0 + C̄1j + C̄2j
2 − aq

6kϕ

j3. (2.352)

2.6.2. Non-local Cosserat continuum model of the duct. Solution of the equations of
equilibrium in the non-local Cosserat continuum

According to the established isomorphism (Section 2.4), the non-local Cosserat solution
should coincide at sphere centres with the exact (discrete) solution. It is, however, important
to see what the continuous non-local solution looks like at the points between the sphere cen-
tres. The solution of the equations of equilibrium in the non-local Cosserat continuum (2.12)
in the static case with zero volume moment and a constant volume force were obtained by
Pasternak and Mühlhaus [72].

Using the conventional Fourier transform, one reduces the non-local “Lamé equations”
(2.12) to the following system of equations:

4k sin
ωa

2
δF

K

[
sin

ωa

2
ū(ω)− i

a

2
cos

ωa

2
ϕ̄(ω)

]
=2πqδ(ω), (2.361)

δF
K

[

ik
a

2
sin

ωa

2
cos

ωa

2
ū(ω)+

(

k
a2

4
cos2 ωa

2
+kϕ sin2 ωa

2

)

ϕ̄(ω)

]

=0, (2.362)

δF
K(ω)=

∫ +∞

−∞
δK(x)e−ixωdx, ū(ω)=

∫ +∞

−∞
u(x)e−ixωdx, ϕ̄(ω)

=
∫ +∞

−∞
ϕ(x)e−ixωdx, (2.37)

where δ(ω) is the ordinary Dirac-delta function.
The inverse transforms are:

δK(x)= 1
2π

∫ +∞

−∞
δF

K(ω)eixωdω, u(x)= 1
2π

∫ +∞

−∞
ū(ω)eixωdω,

ϕ(x)= 1
2π

∫ +∞

−∞
ϕ̄(ω)eixωdω. (2.38)

The Fourier transform of the Kunin-delta function is:

δF
K(ω)=

{
1, |ω|<π/a

0, |ω|>π/a
. (2.39)
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Correspondingly, we will look for a solution of (2.36) for |ω|<π/a. As usual, the full solu-
tion of the system (2.36) can be written in the form:

ū= ūc + ūp, ϕ̄ = ϕ̄c + ϕ̄p, (2.40)

where the pair (ūc, ϕ̄c) is the homogeneous solution and (ūp, ϕ̄p) is a particular solution of
the non-homogeneous system.

The determinant of the homogeneous system is equal to kϕ sin4 ωa
2 and in the interval

|ω|<π/a has a root ω = 0 of the fourth order. Hence, the homogeneous solution has to be
sought in the form:

Xj(ω)=2πC
j

0 δ(ω)+2πC
j

1
δ(ω)

iω
+2πC

j

2
2δ(ω)

−ω2
+2πC

j

3
6δ(ω)

−iω3
(j =1,2), (2.41)

where

X1(ω)= ū(ω), X2(ω)= ϕ̄(ω). (2.42)

Insertion of (2.41) into the homogeneous system gives the following relations between the
constants

C1
2 =−1

2
C2

1 , C1
3 =−1

3
C2

2 , C2
3 =0, C1

1 =−a2

6
C2

2 −C2
0 +2

kϕ

k
C2

2 . (2.43)

Assuming u at x =0 to be u0 and ϕ at x =0 to be ϕ0, one has C1
0 =u0 and C2

0 =ϕ0. Finally,
the homogeneous solution can be written in the form:

uc(x)=u0 −
(

aϕ0 +2
k(a2/4)−3kϕ

3ka
C̄2

)
x

a
− a

2
C̄1

x2

a2
− a

3
C̄2

x3

a3
, (2.441)

ϕc(x)=ϕ0 + C̄1
x

a
+ C̄2

x2

a2
, C̄1 =C2

1a, C̄2 =C2
2a2. (2.442)

A particular solution of the system (2.36) reads:

ūp(ω)= a2πq

8kϕ

· cos2 ωa
2

sin4 ωa
2

δ(ω)+ πq

2k
· δ(ω)

sin2 ωa
2

, ϕ̄p(ω)=− iaπq

4kϕ

· cot ωa
2

sin2 ωa
2

δ(ω). (2.45)

By performing the inverse Fourier transform and adding the homogeneous solution (2.44), the
full solution is obtained as:

u(x)=u0 −
(

aϕ0 +
(

a

6
− 2kϕ

ka

)
C̄2

)
x

a
− a

2
C̄1

x2

a2
−

−a

3
C̄2

x3

a3
+
(

a2q

24kϕ

− q

2k

)
x2

a2
+ a2q

24kϕ

x4

a4
, (2.461)

ϕ(x)=ϕ0 + C̄1
x

a
+ C̄2

x2

a2
− aq

6kϕ

x3

a3
. (2.462)

Alternatively, one can solve the above problem by finding the solution of the equations
of motion (2.19) with zero inertia terms, in which q(x)/(a3η) = ρg = −B, M(x) = 0. Then
the strain and curvature can be found from the non-local constitutive relationship (2.17) and
(2.18) by solving the system of two integral equations. Subsequently, the displacement and
rotation fields can be obtained from (2.14).
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Equations (2.19) have the following solutions:

σ(x)=Bx +σ(0), µ(x)=B
x2

2
+σ(0)x +µ(0), (2.47)

where σ(0), µ(0) are yet unknown stress and moment stress at the origin.
The solution can be rewritten in the following form:

u(x)=η

[(
σ(0)

E
− σ(0)

12Eϕ

a2
)

x − 1
2Eϕ

µ(0)x2 − 1
6Eϕ

σ(0)x3

− B

24Eϕ

x4 + B

2E
x2 − a2B

24Eϕ

x2

]

+u(0)−ϕ(0)x, (2.481)

ϕ(x)= η

Eϕ

[
µ(0)x +σ(0)

1
2
x2 + B

6
x3
]

+ϕ(0). (2.482)

This form coincides with (2.46) if one sets

µ(0)= kϕ

ηa2
C̄1, σ (0)= 2kϕ

ηa3
C̄2. (2.49)

Using the boundary conditions u(0)=u(L)=0, ϕ(0)=ϕ(L)=0, one obtains the solution:

u(x)=− ηB

24Eϕ

x(x −L)(x2 +2px + q̂), ϕ(x)= ηB

12Eϕ

x(x −L)(2x −L), (2.50)

2p =−L, q̂ =−4

(
3Eϕ

E
− a2

4

)

, (2.51)

and the constants σ(0), µ(0) are:

σ0 =σ(0)=−1
2
BL, µ0 =µ(0)= 1

12
BL2. (2.52)

The normalisation

L=1, E =1 (2.53)

leads to

u(x)=− ηB

24Eϕ

x(x −1)(x2 +2px + q̂), p =−1
2
, q̂ =−4(3Eϕ −a2/4). (2.54)

Note that the coefficient of x4 in (2.501) is positive because B is negative. This means that
u(−∞) = u(+∞) = +∞, i.e., the branches of the fourth-order polynomial u(x) are going
downwards at the ±∞ (the positive direction of u is directed downwards). Because of (2.54)
the displacement distribution is symmetrical.

The displacement becomes zero at points:

x1,2 = 1
2

(
1±

√
1+16(3Eϕ −a2/4)

)
. (2.55)

If 3Eϕ − a2/4 > 0, i.e.,
√

3Eϕ >a/2, which is the case when the rotational springs are rather
stiff, then x1 >1, x2 <0. This means that both roots x1 and x2 are outside the duct. If 3Eϕ −
a2/4 < 0, i.e.,

√
3Eϕ <a/2, which corresponds to the case of small stiffness of the rotational

springs, then x1 = 1 − q̂ < 1, x2 = q̂ > 0. This means that both roots x1 and x2 are inside the
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Figure 6. Distribution of normalised displacements for soft ((3Eϕ)1/2 < a/2) and stiff ((3Eϕ)1/2 > a/2) rotational
springs.
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Figure 7. Distribution of normalised rotations.

duct (Figure 6). Thus, for a certain combination of constants the non-local Cosserat contin-
uum solution exhibits a boundary effect consisting of anomalous upward displacements near
the boundary.

According to (2.462), after the normalisation the rotations become (Figure 7)

ϕ(x)= Bη

12Eϕ

x(x −1)(2x −1). (2.56)

2.6.3. Cosserat continuum model of the duct
Let us find the solution of the Cosserat equations of equilibrium (2.7) for the case of the con-
stant volume force and zero volume moment (ρf3 =−B,ρm2 =0):

∂σ13

∂x1
+ρf3 =0,

∂µ12

∂x1
−σ13 =0. (2.57)
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Denoting −ρf3 =−ρg =B, one gets the solution of Equations (2.57) in the form

σ13 =Bx +σ(0), µ12 =B
x2

2
+σ(0)x +µ(0). (2.58)

Then taking into account the Cosserat constitutive equations (2.6) one obtains

κ12 = ηa

kϕ

[

B
x2

2
+σ(0)x +µ(0)

]

, γ13 = ηa

k
[Bx +σ(0)]. (2.59)

Subsequently, upon using the deformation measures (2.5) rotation and displacement fields are
found:

ϕ2 = ηa

kϕ

[

B
x3

6
+σ(0)

x2

2
+µ(0)x

]

+ϕ(0), (2.60)

u3 =−ηa

kϕ

B
x4

24
− ηa

kϕ

σ(0)
x3

6
− ηa

kϕ

µ(0)
x2

2
+ ηa

k
B

x2

2
+ ηa

k
σ(0)x −ϕ(0)x +u(0). (2.61)

After satisfying the boundary conditions

u(0)=0, u(L)=0, ϕ(0)=0, ϕ(L)=0, (2.62)

Equations (2.60) and (2.61) become

u(x)= −ηB

24Eϕ

x(x −L)(x2 +2px + q̂c), ϕ(x)= ηB

12Eϕ

x(x −L)(2x −L), (2.63)

2p =−L, q̂c =−12Eϕ/E, σ(0)=σ0 =−1
2
BL, µ(0)=µ0 = 1

12
BL2. (2.64)

Comparing the rotation fields for the Cosserat continuum model (2.632) with the non-local
Cosserat continuum model (2.502), one can see that they coincide, because the constants σ0

and µ0 have not changed, while the displacement fields (2.631) and (2.501) differ in the terms
q̂ and q̂c. Let us analyse this difference.

After the normalisation (2.53), the zeros of the displacement can be found:

x1,2 = 1
2

(
1±

√
1+48Eϕ

)
. (2.65)

It is obvious that 1+48Eϕ >1, therefore x1 >1, x2 <0. Both roots x1 and x2 are always out-
side the duct. This means that the boundary effects, present in the non-local Cosserat contin-
uum model, disappear in the Cosserat model.

There has to be an explanation for that fact. The length where the boundary effect exists
is defined by the value of the parameter q. Let us evaluate

|q̂|= |−4(3Eϕ −a2/4)|<a2.

Hence, the characteristic size where the boundary effect exists is of the order a2 . However,
the Cosserat theory does not see the lengths smaller than a (a2 < a << 1), the characteristic
length parameter which has been used when finite differences were replaced by the partial
derivatives. That is why these boundary effects are left invisible in the Cosserat theory. Fur-
thermore, in terms of the original discrete system, no distance smaller than a exists (there are
no spheres at such distances). Therefore, the “high resolution” boundary effect is an artefact
of the non-local Cosserat continuum resulting from the type of interpolation adopted.
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2.6.4. Comparison of the exact solution with the solution in the non-local Cosserat and
Cosserat continua

Assuming x = ja, one has the Cosserat solution (2.60) and (2.61)

u3(ja)=u0 −
(

aϕ(0)− 2kϕ

ka
C̄2

)
j − a

2
C̄1j

2 − q

2k
j2 − a

3
C̄2j

3 + qa2

24kϕ

j4, (2.66)

ϕ2(ja)=ϕ0 + C̄1j + C̄2j
2 − aq

6kϕ

j3, (2.67)

where

µ(0)= kϕ

ηa2
C̄1, σ (0)= 2kϕ

ηa3
C̄2, ηa3B =−q. (2.68)

Comparing the Cosserat theory solution (2.66) and (2.67) with the exact solution (2.35) one
can conclude that the rotation fields coincide completely, while the displacements differ in the
terms − a

6 C̄2j and a2q
24kϕ

j2.
Putting ja =x in the non-local Cosserat solution (2.46), we immediately see that the non-

local Cosserat solution (2.46) coincides completely with the exact one (2.35). This means that
the non-local Cosserat solution gives the exact solution at nodes where the centroids are;
as we anticipated above, the result is due to the homogenisation by integral transformation.
However, being a continuum solution, the non-local Cosserat solution also gives some values
in between nodes due to the interpolating nature of the homogenisation by integral transfor-
mation.

Figure 8a shows a comparison of the discrete (exact), non-local Cosserat and the Cosserat
solutions for a simple case of three balls. Figure 8b shows the configuration before and after
deformation.

In the above we developed two continuum models of the discrete model, using two differ-
ent homogenisation strategies: by differential expansions and integral transformations and
compared them against the exact solution of the discrete model. The first approach led to
the Cosserat continuum theory. The boundary-value problem is reduced to solving a relatively

Non-local Cosserat

0 0.2 0.4 0.6 0.8 1

1

0.5

0.5

u(x)/umax

x

Cosserat

Discrete

(a) (b)

Figure 8. The comparison of the exact, non-local Cosserat and Cosserat solutions: (a) displacement distribution;
diamonds indicate the centroids of the spheres; (b) configuration before (solid line) and after (broken line) the
deformation in a vertical duct with three spheres.
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simple system of two differential equations. The analysis above shows that the Cosserat con-
tinuum model of granulates gives both quite good accuracy and relative simplicity of solv-
ing the governing equations. The second approach led to the non-local Cosserat continuum
theory that gave us the exact solution. The problem is reduced to solving a system of two
integral equations which is more complicated than solving the system of differential equa-
tions (the first model) and in essence is no simpler than to solve the governing equations of
the discrete model, the system of finite-difference equations. Thus, the second homogenisation
approach indeed gave us the continuum description of the discrete system, a non-local Coss-
erat continuum. However, being just an equivalent description of the discrete model, giving
the exact solution does not offer any simplification, which generally continuum theories are
supposed to do.

3. Wave propagation. Dispersion relationships

For a particular case of q3(x1)=M2(x1)=0 we consider the propagation of harmonic waves

u=Aeiξ(x−vpt), ϕ =Beiξ(x−vpt), (3.1)

where ξ is the wave number and vp is the phase velocity. For the sake of simplicity x will be
written instead of x1, u instead of u3 and ϕ instead of ϕ2.

Propagation of these waves will be studied for the original physical model (2.3) and then
for the Cosserat (2.8) and non-local Cosserat (2.12) models.

3.1. Wave propagation in the discrete (physical) model

By substituting (3.1) in the governing equations of the original physical model, namely the
discrete equations of motion (2.3) or their homogenised (continuous) analogue (2.9), we
obtain the following system:

−mξ2v2
pA+4k sin2

(
ξa

2

)
A− ika sin(ξa)B =0, (3.21)

−Jξ2v2
pB + ika sin(ξa)A+ka2 cos2

(
ξa

2

)
B +4kϕ sin2

(
ξa

2

)
B =0. (3.22)

The characteristic equation is biquadratic with respect to the phase velocity

mJv4
p −4

(
Jk sin2

(
ξa

2

)
+ 1

4
mka2 cos2

(
ξa

2

)
+mkϕ sin2

(
ξa

2

))
v2
p

ξ2
+

+16kkϕ sin4
(

ξa

2

)
1
ξ4

=0. (3.3)

This equation has a positive discriminant. Two real solutions of the equation give the phase
velocity. Since ∀k, kϕ, r, a,m, ξ

mJ >0, 16kkϕ sin4
(

ξa

2

)
1
ξ4

>0,

−4
(

Jk sin2
(

ξa

2

)
+ 1

4
mka2 cos2

(
ξa

2

)
+mkϕ sin2

(
ξa

2

))
1
ξ2

<0,
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both solutions for v2
p are always positive. They read

v2
p = 2k

J ξ2

[(
2r2

5
+ kϕ

k

)

sin2
(

ξa

2

)
+ 1

4
a2 cos2

(
ξa

2

)
±

±
√(

kϕ

k
− 2r2

5

)2

sin4
(

ξa

2

)
+ 1

16
a4 cos4

(
ξa

2

)
+ 1

2
a2

(
2r2

5
+ kϕ

k

)
sin2

(
ξa

2

)
cos2

(
ξa

2

)

 .

(3.4)

Let r =a/2. One can find the ratio of their amplitudes, for example from Equation (3.21):

A

B
= ika

sin(ξa)

4k sin2
(

ξa
2

)
−mξ2v2

p

, (3.5)

where v2
p is given by (3.4).

The first type of wave (positive sign before the radical (3.4)) and the second (negative sign)
have the following long-wave asymptotics

vp ∼
ξ→0

{
ξ−1

ξ
. (3.6)

These are asymptotics of the same type as obtained by Mühlhaus and Oka [35].
The corresponding asymptotics for the ratio of amplitudes is:

A

B
∼

ξ→0

{
0⇒A∼0 (rotational wave)
∞⇒B ∼0 (shear wave)

. (3.7)

Thus, we have two types of waves. The first becomes the rotational wave in the long-wave
limit (ξ →0), while the second is the shear wave. Otherwise, both components are present, but
asymptotically one type dominates. For that reason we will call these waves rotational-shear
and shear-rotational. One should avoid considering the limiting case of ξ →∞ (short-length
wave), since this case cannot be described properly in terms of the physical model. This is
because for large wave numbers, the ball microstructure should be taken into account and the
model should be changed accordingly.

The ratio of amplitudes for different ratios of spring stiffnesses is shown in Figure 9.
All the plots are given for physically reasonable wavelengths. This is due to the fact that in
the considered system the wavelength cannot be shorter than the ball size. Moreover, in the
homogeneous models the wavelength should be much greater than the ball size.

The square of the phase velocity for rotational-shear and shear-rotational waves for differ-
ent ratios of stiffnesses is shown in Figure 10.

3.2. Non-local Cosserat continuum

Substituting (3.1) in the non-local (integral) equations of motion (2.121−2.122) and calculat-
ing the corresponding integrals, one can get the same system as obtained for the exact equa-
tion of motion (3.2), but with a restriction: ξ <π/a. (It does not appear mathematically for
the exact solution.) This restriction reflects the fact that wavelengths must be larger than the
microstructure size. This seems reasonable, since our model was not designed to “see” some-
thing less that the microstructure size.
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Figure 9. The ratio of amplitudes for rotational–shear (a) and shear–rotational wave (b).
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Figure 10. The square of the phase velocity for rotational–shear (a) and shear–rotational wave (b). The circles show
velocities corresponding to integer values of the normalised wave number.

3.3. Cosserat continuum approximation

By assuming f3 =m2 =0, we can write the equations of motion (2.81–2.82) in the form:

ka2

[
∂2u3

∂x2
1

+ ∂ϕ2

∂x1

]

=mü3, m=ρa3η, (3.81)

a2

[

kϕ

∂2ϕ2

∂x2
1

−k
∂u3

∂x1
−kϕ2

]

=J ϕ̈2. (3.82)

Substituting (3.1) in the equations of motion, one can get:

m

a2
ξ2v2

pA−kξ2A+ iξkB =0, (3.91)

J

a2
ξ2v2

pB −kϕξ2B − iξkA−kB =0. (3.92)
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Figure 11. Comparison of the square of the phase velocity for the exact and the Cosserat solutions: (a) rotational-
shear wave, (b) shear-rotational wave.

The system has the following biquadratic characteristic equation with respect to the phase
velocity

mJ

a4
v4
p − 1

a2

(
mkϕ +Jk + mk

ξ2

)
v2
p +kkϕ =0. (3.10)

The discriminant is positive. Two real solutions of the equation give the phase velocity. Since
∀k, kϕ, r, a,m, ξ

mJ

a4
>0, − 1

a2

(
mkϕ +Jk + mk

ξ2

)
<0, kkϕ >0

both solutions for v2
p are always positive. They read

v2
p = a2k

2J




(

2r2

5
+ kϕ

k

)

+ 1
ξ2

±
√(

kϕ

k
− 2r2

5

)2

+ 1
ξ4

+ 2
ξ2

(
2r2

5
+ kϕ

k

)

 . (3.11)

This expression is an asymptotic of (3.4) as ξ →0 with the accuracy o(ξ). This is not surpris-
ing, since the Cosserat model is a long-wave (small wave number) approximation.

Figure 11 shows the square of the phase velocity for both rotational-shear and
shear-rotational waves comparing the exact and the Cosserat solutions. They are in quite good
agreement for the small wave numbers, i.e., in the range where the Cosserat solution approx-
imates properly the exact solution.

The obtained result (3.11) allows us to investigate the effect of the presence of rotational
degrees of freedom. Towards this end consider an asymptotic of kϕ/(ka2) � 1 which is the
case when the rotations are almost suppressed. Then assuming r =a/2, we have

v2
p1 ∼ ka2

J

[
kϕ

k
+ ξ−2

]
, v2

p2 ∼ 0·1ka4

J

[
1− k

kϕ

ξ−2
]

. (3.12)

When the rotations are completely suppressed (kϕ/(ka2)→∞), velocity of the first, rota-
tional–shear, wave tends to infinity, but the amplitude of the displacement oscillations van-
ishes. The velocity of the second, shear–rotational, wave becomes

vp2∞ ∼a2
√

0·1k/J . (3.13)

This corresponds to a conventional shear wave.
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In general, when kϕ/(ka2) is finite, the shear-rotational wave is slower than the conven-
tional shear wave, while the rotational-shear wave is faster than the latter. When experimen-
tal measurements of wave velocities are conducted by registering the time of first arrival, one
can expect that this rotational-shear wave will be registered first. This will lead to the mea-
sured wave velocity being higher than predicted by classical elasticity, thus paving the way to
experimental observation of Cosserat effects.

4. Conclusions

In many cases it is advantageous to model real materials with internal microstructure as con-
tinua based on the well-developed machinery of modern continuum mechanics. This can be
accomplished by associating each point of the continuum with a volume element, which on
the one hand is large compared to the dimensions of the microstructure but, on the other
hand, must be small compared to the characteristic dimensions of the phenomenon to be
modelled. The presence of microstructure implies that, at least in principle, relative move-
ments between the microstructure and the average macroscopic deformations are possible.
The relative movements may be considered by means of additional degrees of freedom. The
introduction of additional degrees of freedom leads to non-classical continua, the simplest
being the Cosserat continuum, each point of which possesses both translational and rotational
degrees of freedom. Proceeding with further degrees of freedom, one obtains higher-order
continua and attains more accuracy in the modelling.

The treatment of a representative volume element as a point of the macroscopic contin-
uum imposes a restriction on the scale of the modelling: details smaller than the representa-
tive volume element are beyond the resolution of the model. It is generally believed that this
restriction can be overcome by incorporating non-local constitutive laws, where, for instance,
the stress at a point depends in an integral sense on the strains within a volume surround-
ing the point. For that reason, non-local continua do not obey the Cauchy-Euler principle:
the stress state of a volume is not completely determined by the stresses at its boundary. This
makes it impossible to deduce the continuum equations of motion from first principles, forc-
ing one to either hypothesise on them or to infer them from microstructural considerations.

The introduction of a suitable continuum theory to model a material with a given micro-
structure requires an appropriate choice of homogenisation procedure. In order to analyse
different homogenisation methods, we considered a model system consisting of decoupled
periodic 1D chains of solid spheres connected by translational and rotational springs. The
model is simple enough to allow complete analytical solutions for both static equilibrium
and wave propagation. Two homogenisation techniques were considered: (1) homogenisa-
tion by differential expansion and (2) homogenisation by integral transformation (Kunin-type
homogenisation). The first technique leads to a local Cosserat continuum, while the second
approach gives rise to a non-local Cosserat continuum theory. The former result offered a
robust balance between accuracy and simplicity being a long-wave asymptotic approxima-
tion to the exact model. The second technique resulted in a non-local continuum description
that yielded an exact solution, but at the same time did not really provide any simplifica-
tion as compared to the exact, discrete model. In fact, there is isomorphism between the
discrete model and a non-local Cosserat continuum. Interestingly, the equations of motion
derived for this case using the Kunin-type homogenisation of the discrete equations assumed
after the introduction of invariant deformation measures, the form expected for a Cosserat
continuum. Another feature of this method is that the non-local and the discrete solutions
for 1D granulates coincide at the centres of the balls. However, between the discrete points
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the Kunin-type homogenisation may lead to unrealistic patterns. In particular, the consid-
ered non-local model for a vertical duct under gravity showed near-boundary displacements
directed upwards, i.e., against gravity. These boundary effects are, however, limited to dis-
tances smaller than the spacing between the particle centres and are simply artefacts of the
homogenisation procedure.

Homogenisation by means of integral transformation produces non-local integral relations
with oscillating kernels. This oscillation is, however, not a direct consequence of the strict peri-
odicity of the model system. For instance, randomisation of the spring stiffnesses makes the
kernels random functions with periodic means.

The analysis of wave propagation in this model system showed that two types of waves
exist simultaneously: shear-rotational and rotational-shear waves, the latter being the faster
ones. As the wave number tends to zero (long-wavelength limit), the shear component is pre-
dominant in the shear-rotational wave, while the rotational component is predominant in the
rotational-shear wave. Further analysis of the Cosserat model showed that in the limit of infi-
nite rotational stiffness (when particle rotation is suppressed) the rotational-shear wave disap-
pears, while the velocity of the shear-rotational wave becomes independent of the frequency,
indicating the absence of dispersion. The rotational-shear wave was found to be faster than
the conventional shear wave. Therefore, when experimental measurements of wave velocities
are conducted by registering the time of first arrival, one can expect that this rotational-shear
wave will be registered first. This will lead to the measured wave velocity being higher than
predicted by the classical elasticity, thus providing a means for the experimental detection of
Cosserat effects.

In conclusion, the framework of the Cosserat continuum theory was found to provide
accurate descriptions of materials with microstructure. The Cosserat effects are responsible for
the increase in measured wave velocities in granular materials as compared to the classical cal-
culations that ignore rotational degrees of freedom.
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33. H.-B. Mühlhaus, R. de Borst and E.C. Aifantis, Constitutive models and numerical analyses for inelastic
materials with microstructure. In: G. Beer, J.R. Booker and J. Carter (eds.), Computing Methods and Advances
in Geomechanics. Rotterdam: Balkema (1991) pp. 377–385.

34. C.S. Chang and L. Ma, Elastic material constants for isotropic granular solids with particle rotation. Int.
J. Solids Struct. 29 (1992) 1001–1018.
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